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Abstract 

The grid method has been used to calculate the 
frequencies of the different vertices and correspond- 
ing Voronoi polygons occurring in generalized 
Penrose patterns. A simplified purely geometrical 
description of the importance of the Y~ yj = 0 (mod 1) 
relation for Penrose pattems that obey certain 
necessary matching conditions is given. In n-grids 
with n odd, local 2n-fold symmetry occurs only if 
the inequality n cos a / ( l + c o s  a)  (mod 1)<~'. y j <  
n / ( l + c o s  t~) (mod 1), where a = 7r/n, is fulfilled. 
n-grids and their corresponding rhombus patterns 
show global 2n-fold symmetry i f ~  y~ = 1/2 (mod 1), 
where yj = 1/2 (mod 1). 

Introduction 

The theoretical importance of non-periodic tilings 
arose first from their relevance to questions of mathe- 
matical logic. Berger (1966) was the first to discover 
an aperiodic set consisting of 20 426 Wang tiles (only 
translations allowed) and therefore refuted Wang's 
(1961, 1975) conjecture that no aperiodic sets exist. 
Berger himself (GriJnbaum & Shepard, 1987), Knuth 
(1968) and L~iuchli (Griinbaum & Shepard, 1987) 
were able to reduce considerably the number of 
necessary tiles. Through a new idea of R. Ammann 
(Robinson, 1978), 16 is now the least-known number 
of Wang tiles in an aperiodic set. In 1971, Robinson 
discovered a set of six tiles (rotations and reflections 
allowed), which are basically squares with 
modifications to their comers and sides. Ammann 
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(Grfinbaum & Shepard, 1987) described another set 
of six tiles, which are of similar nature. 

Some years ago, Penrose (1974, 1978, 1979) found 
a pair of rhombi which, when matched according to 
certain rules (coloured arrows or edge modifications), 
is forced to tile the plane in a non-periodic way. In 
both rhombi all sides have length a. The thick rhom- 
bus has angles of 72 and 108 o and the thin rhombus 
36 and 144 °. They have a r e a s  Athic k = a 2 sin (27r/5) 
and Athin = a 2 sin (~ /5 )  -- Athick/Z , where ~- = 
(51/2+1)/2 (-~1.6180). In any Penrose pattern the 
fraction of thick rhombi equals z / ( l+~- )  and the 
fraction of thin rhombi equals 1 / (1+  ~'). Therefore, 
the area covered by thick rhombi is ~.2 times greater 
than the area covered by thin rhombi. 

Two approaches to the analysis and generation of 
Penrose tilings, the grid method and the projection 
formalism have been suggested by de Bruijn (1981). 
These two methods were generalized and extended 
by Beenker (1982), Kramer (1982), Mackay (1982), 
Kramer & Neri (1984), Duneau & Katz (1985), Con- 
way & Knowles (1986), G~ihler & Rhyner (1986), 
Levine & Steinhardt (1986), Jannsen (1986), Korepin, 
G~ihler & Rhyner (1988) and Whittaker & Whittaker 
(1988). Considerable progress in the knowledge of 
non-periodic tilings has been made during the last 
few years. For an excellent review the reader is re- 
ferred to Griinbaum & Shepard (1987). 

In the present article, special attention is given to 
the Penrose tilings and their construction by means 
of de Bruijn's grid method. The main concern here 
will be the calculation of the frequencies of the 
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different vertices and corresponding Voronoi poly- 
gons occurring in generalized Penrose patterns. 

Pentagrids: de Bruijn's algebraic theory of 
Penrose tilings 

Since we have followed de Bruijn's grid method, it 
seems appropriate to recall his approach to the analy- 
sis of Penrose tilings. 

An infinite Penrose tiling consists of strips of adja- 
cent rhombi with parallel edges. Through connecting 
the midpoints of the parallel edges we get curves that 
stay inside the strips, de Bruijn shows that these curves 
can be distorted without topological changes into five 
periodic line-grids (the union of which is called a 
pentagrid) perpendicular to the pentagonal directions 
ej={cos(2j'n'/5),sin(2jTr/5)}, with j = 0 , 1 , 2 , 3 , 4 .  
Every pentagrid tiling is dual to a Penrose tiling by 
Penrose rhombi, and conversely. A pentagrid is called 
regular if no three lines are concurrent, else it is called 
singular. An intersection point* in the pentagrid cor- 
responds to a rhombus, a mesh, which is the open 
region between grid lines, corresponds to a vertex of 
the rhombus pattern, and an edge of a mesh corre- 
sponds to an edge of a rhombus. 

Using de Bruijn's complex notation the j th  grid is 
the set 

{z ~ CIRe  (z~r-J) + yj~ Z}, 

where z is the coordinate of a point in the complex 
plane C, ~" = exp (27ri/5), and Z is the set of integers. 
Re (z~ -j) denotes the real part of z~ -j. The Tj are real 
numbers which in Penrose patterns, the case studied 
by de Bruijn, satisfy the relation ~ Tj = 0 (mod 1). We 
associate with every point z five integers 

Kj(z)= [Re (z~-J)+ Tj], 

where [a]  is the smallest integer greater than a. As 
the Kj(z) change only when we cross a line of the 
corresponding grid, they are constant for a given 
mesh. The quantity K = ~  Kj(z) is called the index 
of a vertex (every mesh of the pentagrid corresponds 
to a vertex of the rhombus pattern). The index 
increases by 1 when we move a point along an edge 
of a rhombus in the directions ~.0, ~.1, ~,2, ~.3, ~.4, and 
decreases by 1 when we move it in the directions _~.0, __~'1, __~2, __~3, __~'4. 

In order to determine the bounds of Y~ Kj(z) we 
introduce five real numbers )tj defined as follows: 

Aj(z) = K j ( z ) -  Re (z¢--i)-yi. 

Summation over j yields 

Y~/(j(z) : E Aj(z)+E rj, 

* Since we exclude singular pentagrids, the grid lines partition 
the plane into polygons to form a tiling with 4-valent vertices. 

since Y. Re (z¢ -j) =0.  Since 0 <- hi(z)< 1 and the left- 
hand side is an integer, we can distinguish between 
two cases: 

(a) Y. yj =integer  ~ Y. Kj(z) 

e {E yj+ 1, E3'j+2, ETj+3,  E Tj +4}, 

(b) Y. T~ # in teger  ~ Y. Kj(z) 

e{rE vjl, [y. vj]+l ,  FY ~1+2, 

[Y. Tj]+3,  [E 3,j] +4}. 

Importance and geometrical interpretation of the 
relation ~ 3/j = 0 (mod 1) 

One of the relevant features of Penrose tilings that are 
compatible with the matching conditions enforcing 
non-periodicity is that there are no vertex configur- 
ations with three adjacent thin rhombi (Fig. lb).  It 
can easily be deduced that a corresponding line 
configuration in the dual pentagrid (Fig. l a )  appears 
only if 

dE3/ d14 > 1 + T, 

where d23 is the distance between two consecutive 
intersection points on a line of the 0th grid with lines 
of the 2nd and 3rd grid, respectively. Analogously, 
d~4 is the distance between two consecutive intersec- 
tion points on a line of the 0th grid with lines of the 
1st and 4th grid, respectively. From geometrical con- 
siderations (Appendix 1") it follows that 

d23/d14=7"{(c"bE Tj) (mod 1)}/c (mod 1), 

where 

c = To~r- T~ - 3'4+ ko/T. 

* Table 2, Appendix 1 and Appendix 2 have been deposited with 
the British Library Document Supply Centre as Supplementary 
Publication No. SUP 53375 (Tpp.). Copies may be obtained 
through The Technical Editor, International Union of Crystallog- 
raphy, 5 Abbey Square, Chester CH1 2HU, England. 

(a) (b) 
Fig. 1. Grid-line configuration (a) that is not compatible with 

matching conditions (b) (single and double arrows) which force 
a non-periodic tiling of the plane. 
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The following two cases may be distinguished: 

(a) Y~ yj = integer =:> d 2 3 / d 1 4  = z 

(b) ~ yj # integer 

O<_ d23 /  d14 < - "1"[~, 'yj (mod 1)] 

if (c+Y. %)(mod  1)/c (mod 1)>  1 

Table 1. Lower (b~) and upper (b,) bounds of ~, Tj 
for n-grids (n odd) with local 2n-fold symmetry with 

5<_n_<25 

b, = n cos (~r/n)/[1 +cos (Tr/n)] (mod 1). 
b= = n/[1 +cos (1r/n)] (mod 1)= 1 - b l .  

Global 2n-fold symmetry occurs if Y yj = 1/2(mod 1), where each 
7j takes the value 1/2(mod 1). 

n bl b= 
and r/{1-[~, % (mod 1)]}<_ d23/d14~oo 5 0.2361 ( ~ 2 r - 3 )  0.7639 ( ~ 4 - 2 r )  

if (c +Y~ yj) (mod 1)/c (mod 1)<  1. 7 0.3177 0.6823 
-- 9 0.3601 0.6399 

11 0.3863 0.6137 
Therefore, the ratio d 2 3 / d 1 4  for every line of the 0th 13 0.4042 0.5958 
grid is less than 1 + r if and only if Y. % -- 0 (mod 1). 15 0.4171 0.5829 
The corresponding values for all the other grids may 17 0.4270 0.5730 

19 0"4348 0"5652 
be obtained by cyclic permutation. 21 0.4410 0.5590 

23 0.4462 0"5538 
25 0"4505 0.5495 

n-grids (n odd) with local or global 2n-fold symmetry 

One of the characteristic features of n grids with n 
odd is that, once the lines with k s = 0 are chosen, the 
quantity 5-', yj is unaffected by the choice of the origin 
from which the shifts Ys are measured (Socolar & 
Steinhardt, 1986). Translation of the origin to a point 
v changes each yj as follows: 

Ayj = Re (v~-J). 

Since Y~ Re (vr-J) = 0 it follows that Y~ Ayj = O. 
In n-grids with n even, which are obtained by 

superposition of n ordinary grids, obtained from each 
other by rotation over angles of multiples of zr/n, the 
quantity ~ 7j is unaffected by shifting the origin along 
a line that is normal to the vector 

e =  {cos [ ( n -  1)w/2n], sin [(n - 1 ) 7r/2n]} 

and goes through the origin. 
Owing to this property of n-grids with n odd and 

since we are not interested in the specific values of 
kj, we may shift the origin inside a certain mesh such 
that all the y 's  become greater than 0 and less than 1. 

ek 

• 2coso( 

e j,1 1-~ j '~  

, I / 

X 
Fig. 2. Part of  a grid-line configuration that corresponds to local 

or global 2n-fold symmetry with n odd. The direction ek bisects 
the two consecutive grid directions ej and ej+l, where k =  
( j +  In/2])  (mod n). As can be seen, the line of the kth grid only 
participates in the mesh surrounding the origin O if Yk < 
( 2 -  yj - y j+l) /2 cos a, where a = 7r/n. 

From Fig. 2 it can be deduced that the two grid 
lines with index k = ( j +  In /2] )  (mod n) participate 
in the mesh surrounding the origin only if the follow- 
ing two inequalities hold: 

Yk < (1 -- 39 + 1 -- 3'S+1)/2 COS a 

and 

1 - Yk < (Yj+ yj+l)/2 COS a, 

where a = 7r/n. Since we are interested in the depen- 
dence on Y', % of n-grids with local or global 2n-fold 
symmetry, we have to sum over j to obtain the 
necessary condition that all the 2n relevant grid lines 
participate in the mesh under investigation to form 
either a regular (global 2n-fold symmetry) or an 
irregular (local 2n-fold symmetry) 2n-gon and obtain 

n - ~  Ys <.2 ~ %/2 cos c~ 

and 

39 < ( 2 n - 2  Y', ys)/2 cos a. 

The two inequalities can be summarized to give 

n c o s a / ( l + c o s a ) < ~  y j<n/ ( l+cosa) .  

The bounds can be reduced modulo 1 without loss 
of generality. Table 1 gives the bounds of ~ YJ for 
n-grids with 5 - - - n - 2 5 .  Global 2n-fold symmetry 
occurs if Y', 39 = 1/2 (mod 1), where each % takes the 
value 1/2 (mod 1). 

Vertex frequencies in generalized Penrose patterns 

de Bruijn (1981) introduced the set 

aj, y aj 2J)10< < 1}, 

which has the property that any type of vertex is made 
visible by means of a corresponding point in the set 
V. By assuming Y~ yj = 0 the points of V with Y, Ys = s 
form the pentagon-shaped regions Vs. Since Y~ Aj = 
E Ks(z) and Kj(z) ~ {1, 2, 3, 4}, we have the four 
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regions V~, V2, V3 and V4, which correspond to cross 
sections of four equidistant planes with a rhombic 
icosahedron (Henley, 1986). 

By means of the set V we can answer the question 
whether a vector (/Co,..., k4)~ Z 5 corresponds to a 
mesh in a given pentagrid such that Ko(z)= 
ko, . . .  , K 4 ( z  ) = k 4. Such a mesh exists if and only if 

{E ks, E (ks-  Ys)~ r2j} ~ V. (1) 

Moreover, we can see which of the adjacent points 
obtained by increasing or decreasing just one k s by 
1 or by adding ±~.2j satisfy (1).* 

Consider vertices with ~ k s =2. The points 0 = 
~, (kj - ~ l j ) ~ 2 j  densely fill the pentagon-shaped region 
V2 (Y~ Ys--0) depicted in Fig. 3(a). Adjacent vertices 
are derived in the following way. If a point 0 lies 
inside the shaded area, the addition of +~.2 (kl + 1), 
+~.s (k4+ 1) and -1  (ko-1)  will yield points that lie 
inside the corresponding subsets V3 and V1, respec- 
tively. We can, however, derive the type of vertex 
simply by forming the intersections of V2 with the 
accordingly shifted subsets Va and V3. Fig. 3(b) shows 

* Note that +1, +~', -t-~ "2, + ~ 3 ,  +~,4 on p. 51 in de Bruijn (1981) 
should be replaced by +1, +¢2, +~.4, +~.6, +st 8. 

i \  ..... : : / -  ,,/ 
.... ~ L'~ h k=÷'l 

(a) 

V2 ~ ,  V~(ko-1) 

, ) 
i // 

// / 

1k3+1) L .  / 

(b) 

Fig. 3. (~z) Subset V 2 of a pentagrid with ~ yj =0  (rood 1) and a 
point O = ~  ( k j -  y j)~ "2j that satisfies (1). The ten vectors k j + l  
correspond to points we obtain by increasing or decreasing only 
one kj by 1 or by addition of +~.2j. Three of them, k I + 1 (+~.2), 
k4+ 1 (+~-s), and k o -  1 ( -1 )  lie inside the corresponding subsets 
V 3 and Vt. The type of vertex is shown on the right-hand side 
of V2. We get the same type of vertex if 0 lies inside the shaded 
area. (b) Division of the subset V 2 into polygonal subregions 
according to different types of vertices. The subregions are 
derived by intersection of V2 with accordingly shifted subsets 
Vl and V3. One of each subset is shown, namely V~, correspond- 
ing to k o -  1, and 1i"3, which corresponds to k 3 + 1. 

the division of the pentagonal region V2 (~ yj = 0) 
into polygonal subregions according to the different 
types of vertices. 

In fact, the type of a vertex in a Penrose pattern is 
entirely defined by the location of 0 in Vs, where 
s = Y. kj. Since the points 0 that satisfy (1) densely 
fill the regions Vs, the frequency of each vertex type 
can be derived by means of the areas of the corre- 
sponding subregions. 

In the case where Y~ 7j = integer there are now five 
subsets V~, since 

X k ~  {[Z vjl, [Y ~/jl+l,  [Y v j l+2,  

[E yj]+3,  [E yj]+4}. 

Three of them, Vrx~,jl+l, Vrx~jl+2, and Vrxvjl+3 are 
decagonal shaped, Vrz~j 1 and Vrzvjl+4 are pentagons. 
Their division into polygonal subregions depending 
on Y~ yj is shown in Fig. 4. Since we have made no 
use of any matching condition such as coloured 
arrows for the calculation of the vertex frequencies, 
we obtain only 16 types of vertices (Fig. 5) in general- 
ized Penrose patterns. Th'e frequencies of the different 
vertices are evaluated by calculating the areas of the 
corresponding regions of the subsets Vs. The results 
are summarized in Tables 2* and 3 and Figs. 6 and 7. 

Extension of de Bruijn's colouring theorem (Pav- 
lovitch & K16man, 1987) yields 41 types of vertices.t 
Pavlovitch & K16man use four different rhombi and 
distinguish between two types of grid lines: the lines 
of type 1 at the left of which the index has the values 
[~ yj ], [~ yj] + 1 and [~ yj ]+ 2, and lines of type 2 
where the index takes the values [Z Yj] + 1, [~ yj ] + 2 
and [Z Ys]+3.$ 

Another way we can classify the vertices is to con- 
struct the Voronoi domains. The Voronoi domain of 
a particular point from a set of discrete points in 
two-dimensional space is the innermost region 
bounded by lines that perpendicularly bisect the lines 
from the point under consideration to all other points. 
In consequence, the Voronoi domain is the polygon 
enclosing the space in which all points are closer to 
that point than to any other. Voronoi polygons may 
be used to define neighbour bonds. Any point whose 
Voronoi polygon shares an edge with the polygon of 
the central point is counted as a neighbour. The 
number of neighbours is the coordination number of 
the central point. In fact there are only three kinds 
of neighbour bonds in Penrose tilings (Fig. 5): those 
at distance a, which corresponds to a rhombus edge, 

* See deposition footnote. 
t Note that 8W, 8W, 8W and 7V, 7V in Fig. 11 on p. 699 in 

Pavlovitch & Klrman (1986) should be replaced by 7 V, 7 V, ~ V and 
7 W, 7 W, respectively. 

Note that their equation (13) on p. 695 which determines the 
type of a line is not correct. In Appendix 2 (deposited) is given 
the derivation of an equation which determines the type of  a grid 
line according to the extended colouring theorem. 
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bonds along short diagonals of thin rhombi at dis- 
tance c = a / r  and along short diagonals of thick 
rhombi at distance b = 2a sin (7r/5). If we denote by 
na, nb and nc the number of a, b and c bonds we 
get the numbers shown in Table 3. Following Euler's 

relationship between the numbers of elements of 
different dimensionality in a structure, we get the 
equation e /m  - e /n  + 1 = 0, where e is the average 
number of edges of the tiles, and m and n denote the 
average domain valencies of vertices and edges, 

(c) ~ (d (a)  

f311a 

(e) ( f )  ( (h 

f311b f311c 

c 

( (j (k) ~ (t 

f311d 

Ira) ~ (n) (o) (p) 

f51 

~ f53 

Fig. 4. Division of the five subsets Vs (s = ~  kj) into polygonal subregions depending on T. yj. (a) s = 1, ~ y~ =0. (b) s=2 ,  ~ yj =0. 
(c) s=2,  T. yi=0-2. (d) s=2 ,  T. y i = 2 - z ( - 0 . 3 8 2 0 ) .  (e) s=2,  ~y~=0.5.  (f) s=3 ,  Y'.yj=0. (g) s=3 ,  Y. yj=0.15. (h) s=3 ,  
Y. yj = 2 ~ - 3  (~0.2361). (i) s =3, E Yi =0"3. (J) s =3, Y. Yi = 2 - r  (~0.3820). (k) s =3, ~ yj =0.44. (l) s =3, Y. y~ = 4 r - 6  (~0.4721). 
(m) s=3 ,  Y. yj =0.5. (n) s=4 ,  )". yj=0. (o) s=4,  E Yj =0.4. (p) s=5 ,  ~ yi =0.5. 
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respectively. In Penrose tilings e = 4  and n = 2, so 
m = 4, which corresponds to the average number  na  

of  a bonds  meeting at a vertex. Each vertex in the 
Voronoi ti l ing is common  to three polygons,  so the 
equation e / m  - e / n  + 1 = 0 is satisfied only if  e takes 
the value 6, since n = 2. From this it follows that the 
average coordinat ion number  na + nb  + nc = 6, and 
since na  = 4  and the number  of  thick rhombi  is r 

times greater than the number  of  thin rhombi ,  we 
obtain nb = 2 / r  and nc  = 2 / r  2. 

The frequencies  of larger local environments ,  corre- 
sponding to first- and higher-coordinat ion spheres,  
may be obta ined by the intersection of a part icular  
polygonal  subregion with accordingly shifted subsets 
Vs. For instance,  in Penrose tilings with Y~ yj = 0, each 
S vertex with index 1 or 4 is sur rounded by five 

D Q K L 

1/ 
M J R S 

1 
> 

T U V W 

X 

A 

Z " S T / / / 2 ~ \  
Fig. 5. The 16 types of vertices (thick lines) and corresponding Voronoi domains (thin lines) occurring in generalized Penrose patterns. 

The notation is in accordance with de Bruijn (1981) and Pavlovitch & Kl6man (1987). 
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T a b l e  3. Frequencies F o f  the different vertices in generalized Penrose pat terns  

The first column gives the notation of the vertices v according to de Bruijn (1981) and Pavlovitch & Kl6man (1987). The second column 
contains the number of edges ev meeting at a vertex. The next four columns contain the frequencies F given by the sum of the 
corresponding areas f of the subsets V s depending on Y. % (0<-Y~ 3'j-< 0.5). The areas ad (in arbitrary units) of the Voronoi domains 
and their number of edges ed are given in columns 7 and 8, respectively. The last three columns contain the numbers of a, b and c 
bonds. Since Penrose patterns are metrically balanced (Griinbaum & Shepard, 1987), the relations Y. evvFo/Y.Fv = 4 and Y. edoF~/Y. F~ = 6 
(T. Fo = 4+2z) must be satisfied. 

v ev 0---Y. 7j-< 2~--3 2~'-3-Y.  7j <- 2 -  7 2 -  7"-Y. 7j <- 47"-6 4~'-6---Y. 7j-< 1/2 ad ed na nb nc 

D 3 f26a+f310a+f311af26a+f310b+f311bf26b+f310c+f311c f26b+f310d+f311d 3r+5  6 3 2 1 
+f46a +f46a +f46a +f46a 

Q 3 f12+f25a+f45a f12+f25a+f45a f12+f25b+f45a f12+f25b+f45a 4~'+1 5 3 0 2 
+f52 +f52 +/52 +f52 

K 4 f13+f42a+f53 f13+f42a+f53 f13+f22b+f42a f13+f22b+f42a 7 ' r -2  5 4 0 1 
+f53 +f53 

L 4 f38a f38b f38c f38d 3z+7 7 4 3 0 
M 4 f24a +f44a f24a +f44a f24b +f44a f24b +f44a 4r + 3 6 4 1 1 
~J 5 f28a+f37a+f39a f28a+f37b+f39b f37c+f39c f37d+f39d 4~'+5 7 5 2 0 
R 5 f23a +f43a f23a +f43a f23b +f43a f23b +f43a 5~'+ 1 6 5 0 1 
S 5 f l l+ f21a+f31a  f l l+f21a+f41af51 f l l+ f21b+f41a  1 0 r - 5  5 5 0 0 

+f41a+f51 +f51 
f22a +f33a f22a 
f35a f35b 
f27 a +f32a f27 a +f32b 
f36a f36b 
f34a f34b 

+f51 
T 6 8 r - 2  6 6 0 0 
U 6 f312c f312d 5 r+3  7 6 1 0 
V 7 6~'+1 7 7 0 0 
W 7 f34c +f36c f34d +f36d 6r + 1 7 7 0 0 
X 8 f33c 4~'+4 8 8 0 0 
Y 8 f35c f35d 4~'+4 8 8 0 0 
Z 9 f33b f32c f32d+f33d 2~'+7 9 9 0 0 
ST 10 f31b f31c f31d 10 10 10 0 0 

F[×] 
5 0 -  3 

40-  t 4 

"3 
30-  5 

20- 5 

10- 

6 

! 
0.0 0.1 0.2 0.3 0.4 0.5 

Fig. 6. Frequency of n-valent vertices (n = 3 . . . . .  10) versus Y. 7j 
(0 - Y~ 3'~ <- 0"5) in generalized Penrose patterns. 
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Fig. 7. Frequency of the 16 types of vertices versus Y. % (0<-~ yj <_ 
0.5) in generalized Penrose patterns. 
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Tab le  4. N e i g h b o u r  separat ions  r a n d  their f r equenc ie s  
in Penrose  t i l ings with ~, yj = 0 

The neighbour points are described by Y~ Akj¢ j. Cyclic permutations 
and changes of signs give points with equivalent distances. 

r Akj Frequency 
¢- 1 (0.6180) 10100 4- 2¢ (0.7639) 

1 10000 4 
(3-¢) t/2 (1.1756) 11000 8-4r (1.5279) 
(4- ¢)1/2 (1.5434) 11010 8z- 12 (0.9443) 

¢ (1.6180) 11000 16z-23 (2.8885) 
r (1.6180) 11001 33 -20r (0.6393) 

(r+2) t/2 (1.9021) 10100 9-3r (4.1459) 
2 20000 10-6¢ (0-2918) 

('r+3) 1/2 (2.1490) 11100 7¢-7 (4.3262) 
2r-  1 (2.2362) 1 llOT 4- 2r (0.7639) 

(2r+3) 1/2 (2.4972) 111i0 16-8r (3.0557) 
r+l  (2.6180) 11010 6r-4 (5.7082) 

D-vert ices .  The  second  c o o r d i n a t i o n  sphere  consis ts  
o f  e i ther  five J-, four  J- and  one  V- or  three  J- and  
two V-vertices, wi th  relat ive f requencies  2 r -  1, 5 and  
5r, respect ively.  The  first c o o r d i n a t i o n  sphere  o f  a 
Q-vertex consis ts  o f  two J- and  one  V-, or  two J- and  
one  T-vertex. The  f i r s t -ment ioned  c o o r d i n a t i o n  is 2 r  
t imes more  f r equen t  t han  the  second  one.  The  
e n v i r o n m e n t  o f  a V-vertex up  to the second  coord ina -  
t ion  sphere  a lways  looks  the  same. The  e n v i r o n m e n t s  
o f  T-vert ices differ on ly  i f  the  four th  c o o r d i n a t i o n  
sphere  is t a k e n  in to  account .  

The  de r iva t ion  o f  the  f requenc ies  o f  larger  local  
e n v i r o n m e n t s  was used  to ca lcula te  the rad ia l  distri-  
bu t i on  func t i on  a m o n g  all vert ices in Penrose  t i l ings 
wi th  ~ yj = 0. The  n e i g h b o u r  separa t ions  up  to a 
m a x i m u m  d is tance  o f  r = "r2a are l isted in Tab le  4. 

By means  o f  def la t ion ,  Hen ley  (1986) de r ived  the  
f requenc ies  o f  the  different  vert ices in Penrose  pat-  
terns wi th  ~ y~ = i n t e g e r .  Whi t t ake r  & Whi t t ake r  
(1988) ex t ended  the self -s imilar i ty  r e l a t ionsh ips  to 
more  genera l  cases. They  der ived  14 d e c o m p o s i t i o n  

types  for  Penrose  pa t te rns  wi th  Y'. yj = 1 /2  (mod  1), 
where  yj = Y'. y j /5 .  However ,  when  the y ' s  depa r t  f rom 
s imple  values  by  a rb i t ra r i ly  smal l  amoun t s ,  the  num-  
ber  o f  d e c o m p o s i t i o n  types  becomes  indef in i te ly  
large. H e n c e  Hen ley ' s  m e t h o d  seems no t  to be 
a p p r o p r i a t e  to de t e rmine  the vertex f requenc ies  in 
genera l ized  Penrose  pa t te rns .  
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Abstract 

Size-effect distortions have been computed in a pair 
of orientationally disordered isomers of dibromo- 
diethyldimethylbenzene using Monte Carlo simula- 
tion. Net forces/torques were computed for each 
molecule and the direction of movement was deter- 
mined using variational methods. The sampling was 
carded out both in sequential and in a random 
manner. Effects of lattice size, interaction radius and 
boundary conditions have been investigated. In the 
lowest-energy configuration, typical centre-of-mass 
displacements were in the range 0.25-0-30 A. Average 
molecular librations, represented in terms of Eulerian 
angles, were in the range 0-4 °. The ~ and ~ com- 
ponents however had large r.m.s, values (---10°). Basic 
results and trends were unaffected by the lattice size 
and the interaction radius (6-15 A). However, the 
r.m.s, values of the angles came down considerably 
for fixed boundaries. The influence of temperature 
on size effect has also been investigated. 

I. Introduction 
In recent publications (Welberry, Jones & Epstein, 
1982; Epstein & Welberry, 1983; Welberry & 
Siripitayananon, 1986, 1987) we have described our 
interest in the study of disordered molecular crystals, 
and the development of methods for recording and 
analysing diffuse X-ray scattering data. Although the 
most recent of these studies involved quantitative 
fitting of calculated three-dimensional-disorder 
diffuse-scattering distributions to the observed data, 
no account was taken of thermal diffuse scattering 
nor the molecular equivalent of the size-effect distor- 
tions that are found to be important in alloys (Warren, 
Averbach & Roberts, 1951). In a more recent paper 
(Khanna & Welberry, 1987) general diffraction 
equations for diffuse scattering from molecular crys- 
tals, taking account of these additional effects, were 
developed, and a basic analysis scheme for separating 
the various components of the diffuse scattering was 
outlined. This work showed that the analysis for 

0108-7673/90/120970-05503.00 

molecular crystals is considerably more complex than 
the analogous analysis for alloys because of several 
factors: the slowly varying and essentially spherical 
atomic scattering factors fA etc. applicable to the alloy 
case must be replaced by molecular scattering factors, 
which are rapidly varying complex functions in the 
reciprocal space; alloys also tend to be relatively 
simple structures with high symmetry whereas 
molecular crystals are generally of low (e.g. mono- 
clinic) symmetry; perhaps most importantly, 
molecular crystals often contain different sublattices 
upon which the molecules have a different (symmetry- 
related) orientation. 

Before embarking on an analysis of the diffuse 
scattering from a real sample, we decided, in order 
to obtain some feeling for the relative magnitudes of 
the various effects likely to be encountered in practice, 
to undertake a computational study using semi- 
empirical potential-energy calculations (see e.g. 
Kitaigorodsky, 1973; Ramdas & Thomas, 1978) on 
the previously reported dibromodiethyldimethyl- 
benzene system [BEMB1 and BEMB2 (Fig. 1); see 
Welberry & Siripitayananon (1986, 1987)]. Both 
BEMB1 and BEMB2 are monoclinic with two 
molecules per unit cell. Their lattice parameters are: 

H3¢"~Br B r - ~ B r  

Br ~ y ~ ' C H 3  H3C" y "CH 3 

I I 

H3C . Br Br B, H3C C.3 
A B A B 

BEMB 1 8EMB 2 

Fig. l. Molecular structures of two isomers BEMB1 and BEMB2 
which possess static orientational disorder. Two possible orienta- 
tions, A and B, are shown in the figure. 
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